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The effects of peripheral-layer viscosity on the flow characteristics of a bio-fluid due to 
peristaltic transport has been investigated. It is shown that, for a given pressure 
drop, the flow flux increases and the frictional force decreases as the viscosity of the 
peripheral-layer fluid decreases. However, for zero pressure drop, the flux does not 
depend upon this viscosity while the friction force decreases as it decreases. 

The analysis has been applied and compared with observed data. 

1. Introduction 
The term ‘peristalsis ’ is used for the mechanism by which a fluid can be transported 

through a distensible tube when contraction or expansion waves propagate progres- 
sively along its length. Peristaltic action is used by human organs (such as ureter, 
male reproductive system, gastro-intestinal tract, bile duct) to perform their function 
effectively. It has also been suggested that this mechanism might be useful in explain- 
ing the function of cilia transport through the ductus efferentes of the male repro- 
ductive organs, Lardner & Shack (1972) and Sleigh (1974). 

Latham (1966) was probably the first to investigate the mechanism of peristalsis 
in relation to mechanical pumping. Since then, several investigators have contributed 
to the study of peristaltic action in both mechanical and physiological situations 
(Burns & Parkes 1967; Hanin 1968; Barton & Raynor 1968; Fung & Yih 1968; 
Shapiro, Jaffrin & Weinberg 1969; Yin & Fung 1969; Chow 1970; Zien & Ostrach 
1970; Li 1970; Lykoudis & Roos 1970; Weinberg, Eckstein & Shapiro 1971; Mittra 
1971; Jaffrin & Shapiro 1971; Tong & Vawter 1972. In  particular, Burns & Parkes 
(1967) used perturbation techniques to study the peristaltic motion through a channel 
and a tube. Barton & Raylor (1968) studied the peristaltic motion in a circular tube 
by using long and short wavelength approximations. The fluid mechanics of the ureter 
has been studied by Lykoudis & Roos (1970) and Boyarsky & Labay (1972). The 
interaction of Poiseuille flow on the peristaltic motion has been studied by Mittra & 
Prasad (1974). Gupta & Seshadri (1976) have investigated the peristaltic pumping 
in a non-uniform tube. 

In  these studies, the effects of viscosity variation of the fluid has not been taken 
into account, though there have been suggestions that peristaltic mechanism may be 
involved in vasomotion of small b l o d  vessels, (Fung & Yih 1968), in ductus efferentes 
of the male reproductive tract (Lardner & Shack 1972), in transport of spermatozoa 
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in the cervical canal (Smelser, Shack & Lardner 1974), and in intestines; all being 
cases where the viscosity of the fluid near the wall is different from its viscosity in 
the centre of the duct. 

Keeping these in view, in this paper investigations are carried out to study the 
effects of viscosity variation of the fluid on the mechanism of peristaltic transport 
through a pipe and a channel using the long-wavelength approximation applied by 
Barton & Raynor (1968). 

2. Peristaltic transport through a tube 
Let us consider the peristaltic motion of an incompressible Newtonian fluid through 

a tube whose viscosity varies across the duct, the physical situation of which is shown 
in figure I.  Since the wall of the tube is executing travelling ring waves due to peristal- 
sis, the geometry of wall siirface can be described as 

H(X', t') = a + b sin 2n/A(X' - ct ' ) ,  (1) 

where a is the mean radius of the tube b is the amplitude and h is the wavelength of 
the peristaltic wave, and c is the wave propagation velocity. It may be noted here 
that the flow is completely symmetrical about the axial co-ordinate, X'. 

To study the problem, in what follows we have transformed the stationary co- 
ordinates, R', x' to moving co-ordinates r ', x' (with U', w' and u', w' as respective 
fluid velocity components in these co-ordinates, see figure 1) which move with the 
wave velocity, c, in the positive X' direction, as follows: 

Using the long wavelength approximation as in Barton & Raynor (1968), Shapiro 
et ul. (1969) and Lardner & Shack (1972), and neglecting inertia terms, the equations 
of momentum and continuity in the moving co-ordinates can be simplified in 
dimensionless form by the following: 

R ' ,  U'  
A 

--D X'. W' 

+ A +  

FIGTJRE 1. Peristaltic transport through a tube. 
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Here 

h u = - U', 
h 
ac ' ac 

u = - - I  
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(4) 

where R, X ,  r ,  x are dimensionless stationary and moving co-ordinates, t is dimension- 
less time, ,u(r) is a viscosity function, ,ul being the viscosity of the central layer and 
,uZ that of the peripheral layer, and p is the dimensionless pressure. It is noted from 
equation (4) that the pressure is approximately a function of z only i.e. 

The non-dimensional boundary conditions are : 

where h = H / a ,  and the dimensionless amplitude of the wave B = b/a < 1.  

w, we get the dimensionless velocity 
Integrating equation (3) and using the corresponding boundary conditions (7) for 

The dimensionless flux q( = q ' / m 2 c ;  q' being the flux in the moving system) is given 

q = foh2r.w.dr, 

which, using equation (8), gives 

(9) 

where 

8-2 
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Integrating equation of continuity (5) with respect to r and using the boundary con- 
ditions (7),  it may be noted that q is constant with respect x. 

Since the pressure drop, Ap = p ( 0 )  -p(h) ,  across one wavelength is the same whether 
measured in the fixed or moving co-ordinate system it can be calculated from equation 
(10) as follows: 

The flux, q, is related with the dimensionless flux, Q, (= Q'/nu2c; Q' is the flux in 
the stationary co-ordinate system) by the following relation: 

Q = 2 WRdR = 2 r (w+ 1)dr = q+h2. 
/ O h  / O h  

The time averaged flux, &, for s complete time period, T = h/c, is obtained by 
using equation (13) as 

I T  1 
& = p /  0 &&'=I 0 Qdt 

= q+1+*€2,  (14) 

where q is given by equation (12). 
The dimensionless friction force F, (=  F'/nhcp,; F' is the friction force a t  the wall 

in the stationary co-ordinate system which is same as in the moving system), across 
one wavelength can be obtained by using equation (8), as 

F = -IO1h2$dx,  

which, on using equation (lo), gives 

F = 
o f  

For any given viscosity function p(r ) ,  the flux and the friction force in the tube 
under peristaltic transport can be investigated from equation (14) and (16) respectively. 

3. Effects of peripheral-layer viscosity 

visco8ity variation in the dimensionless form as (see figure 2 ) :  
To study the effects of peripheral layer on the flow characteristics, consider the 

p = 1 for 0 < r Q h,, 

F = F2 = p2/p1 for h, G r Q R ,  
where p 2  < pl. It is noted that when the geometry of the wall changes to 

h = l+ssin2nx 

in the moving co-ordinate system owing to peristalsis, the corresponding change that 
would occur in the geometry of the interface which may be given by (see figure 2 )  

h, = H,/u = a + el sin 2nx, (18) 

where 01 = ul/u is the dimensionless mean radius of the central layer and el = bJa, 
is the amplitude of the interface wave, to be determined. 
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FIGURE 2. Peristaltic motion in-a tube with peripheral layer adjacent to the wall. 

To determine el, we proceed as follows. In the two regions 0 < r < h, and h,, < r < h, 
the corresponding non-dimensional fluxes can be obtained, by using (8) and (17) 
appropriately, as 

q1 = IOh1 2rwdr 

h 
qa = IhL 2rwdr 

where q, is the dimensionless flux of the central layer fluid and q2 that of the peri- 
pheral layer, in the moving co-ordinate system. From (19) and (20) the total flux can 
be obtained as 

Expression (21) can also be obtained from equation (10) after using the viscosity 
function given in equation (17). Now, integrating the equation of continuity sepa- 
rately in the two regions, it may be noted that not only q but also q1 and q2 are constants 
with respect to x .  

As in the general case, integrating equations (19), (20) and (21) across one wave- 
length and noting that the pressure drop is same in each case, we have 
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From equations (22) ,  (23)  and (24)  we get the equation determining el as follows, 

It can be seen by direct substitution that h, = ah satisfies this equation and hence, 
from equations ( 1 )  and (18),  

NOW, using the viscosity function given in equation (17) ,  the expressions 
from equations (14)  and (16)  can be written, after noting equations ( 1  1) and (22)  as 

€1 = ox?. (32)  

and F 

e2 I, Ap &=I+--- -+- ,  
2 I, ZI, 

I t  I, 
I1 I1 

F = 2&--2-+Ap- ,  

where I,, I2 are given by equations (25)  and (26)  and 

(33)  

(34)  

After using equation (32)  in equations (33) and (34) and evaluating the integrals 
given in equations (25) ,  (26)  and (35) ,  the final expressions for a and F can be obtained 
as 

where 

When Fz = 1, equation (36)  reduces to the result of Xhapiro et al. (1969). 
Since the function g increases as p2  or CL decreases (F,, a being less than unity), i t  

may be noted from equations (36)  and (37)  that 0 increases and F decreases with the 
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A p = O  
0.91 5 
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, j72 - 
FIGURE 3. Variation of with jir for different A$. E = 0.6, u = 0.92. 

decrease in pz or a, for Ap > 0. For Ap = 0, Q does not depend upon p2 or a, but F 
decreases as ji or a decreases. 

As expected, the variations of 0 and F with Ap are linear for given p2,  8. Following 
Shapiro et al. (1969) and considering the limiting case, 0 = 0, the pressure rise ( - Ap)  
can be found from equation (36) as, 

which decreases as ,iiz decreases and varies as c2/g for E < 1. Again, when F = 0, it 
may be noted from equation (37) that the pressure rise ( - Ap)IFGO has the same 
behaviour as mentioned above. 

To see the effects of E on the flow characteristics analytically, equations (36) and 
(37)  can be approximated for E < I as 

0 = ~ ~ ( 4 - 5 A p . g ) + A p , \  

It can be seen from these equations that 0 and F increase as E increases for A p  = 0 
or for 4/79 > Ap as g 2 9 .  

To see these results quantitatively, the expressions of a and F from equations (36) 
and (37) have been plotted in figures 3, 4 and 5 for various values ofp,, E and Ap.  
From these graphs, the results discussed above may again be noted. In  particular, 
it is seen from figures 3 and 5 that 0 and F increase with Ap > 0 but the difference in 
Q from its corresponding value for Ap = 0 is large for F2 < 1 than that ofp, = 1 even 
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FIQURE 4. Variation of 8 with E for different Ap and ,ii*. u = 0-92. 
--- , Ap = 0.06; -, Ap = 0.006. 

for very small Ap (=  0.005, say) whereas the difference in F remains constant for all 
F2. From figures 4 and 5, it is noted that &, F may increase with 8 only under certain 
condition which depends upon Ap and p3. 

4. Application 
Let us apply the circular-tube model to the chyme movement through small in- 

testines, by considering the chyme core to be surrounded by a thin layer of mucus 
(peripheral layer) (Guyton 1971). It may be noted that the viscosity of chyme which 
may be considered as a semi-fluid, is much greater than the mucus viscosity. During 
peristalsis, the chyme core takes the same shape as that of intestine and is assumed 
to be given by equation (18). As reported by Barton & Raynor (1968) the observed 
average chyme velocity (Q'/na2 = &c) is of the order 2-54 cm min-l while the cal- 
culated chyme velocity is 1-83 cm min-l. 

To compare our analysis with their observations, we use the values of the para- 
meters for the chyme transport as given by Barton & Raynor (1968), which are as 
follows: a = 1.25 cm; c = 2 cm min-l; h = 8.01 cm; a/h = 0.156. 

The mucus-layer thickness is of the order 0.1 cm and b may be taken as 0.75 em, 
giving e = 0.6, a = 0.92 (Guyton 1971). The viscosity of the gastric mucus varies as 
1 w lo2 CP (Janowitz & Hollander 1954; Heatley 1959; Snary, Allen & Pain 1971). 



Peripheral-layer viscosity and peristaltic tramport 233 

- 
c(2 - 

FIGURE 6. Variation of F with pa for different Ap and 6 ;  a = 0.92. --- , Ap = 0; - , Ap = 0.06.. 

The viscosity of the chyme may be of the same order of magnitude as that of faeces 
which varies as 103 - 108 CP (Patel, Picologlou & Lykoudis 1973; Picologlou, Patel & 
Lykoudis 1973). Considering these values, F2 may be taken a5 to vary 10-4-10-2. 

Using the above data, 0 can be calculated from equation (36) as 1.157 for ,ii2 = 

Ap = 0.005. The average chyme velocity is then calculated as 2.314 cm/min which 
differs from the observed value by only 9% whereas for Ap = 0.005, ,ii2 = 1, this 
difference is nearly 27% (Barton & Raynor 1968). 

For Ap = 0, E = 0-6, a = 0.92, the friction force, F ,  can be calculated from equation 
(37) as 3.844 for ,ii2 = 1 and 1.45 x 10-3 for ,ii2 = which is negligible in comparison 
with the value for ,ii2 = 1, showing the importance of peripheral-layer viscosity on 
friction force (see figure 5). 

5. Peristaltic motion in a channel 
Consider the symmetrical peristaltic flow of a fluid in a channel as shown in figure 6. 

In this case also, the viscosity function in the dimensionless form has been assumed 
to be given by equation (17), r being replaced by z. 

Following, the same procedure as in the previous case the dimensionless flux per unit 
width, a (=  Q'/2ac, Q' is the flux in the stationary co-ordinate system) and friction 
force per unit width, F ( =  Fa/,u,hc; F' is the friction force at  the upper wall in the 
stationary co-ordinate system) can be obtained as 

where 
(43) 
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c -  Z ' ,  U' 

0 1  

I ?  5X', W' 

FIGURE 6. Peristaltic motion in a channel with a peripheral layer adjacent to the wall. 

0.01 5 

0.0 I 
0.05 0.10 0.15 0.20 0- 0 

P 2  - 
FIGURE 7.  Variation of with p2 for different Ap. E = 0.1, a = 0.833. 
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FIGURE 8. Variation of with B for different A p  and ,iiz. a = 0.833. 
, A p  = 0.05; __ , A p  = 0.005. --- 

Forp2 = 1, i t  may be noted that equation (41) reduces to  the same form as equation 
(30) of Lardner & Shack (1972) when the eccentricity of the elliptical motion of cilia 
tips is zero in their analysis (Shapiro et al. 1969). 

Since the behaviour of the function, g1 with ,i12 and a is same as the function, g of 
equation (38), all the results discussed in the circular case regarding 0 and F are 
qualitatively valid in this case also. To see these results quantitatively, the expressions 
of @ and F from equations (41) and (42) have been plotted in figures 7, 8 and 9 for 
different values of p2 ,  Ap and F. From figures 7 and 9 i t  is noted that a increases and 
F decreases as F2 decreases for Ap > 0. Further, i t  can also be observed t h a t  a and F 
increase with the increase in E for certain values of j i 2  and A p  (see figures 8 and 9). 
For Ap = 0 , a  does not depend upon ,ii2 but F decreases as ,ii2 decreases and its value 
for ,ii2 < 1 is much smaller than its corresponding value for ,ii2 = 1 (see figure 9).  

The above analysis may also be applied in the study of flow rates observed in the 
ductus efferentes of the male reproductive tract. As pointed out by Lardner & Shack 
(1972), the approximately estimated value of flow rate of human rete testis fluid per 
ductus efferent is of the order 6 x 10-3 ml/hr. 

The viscosity of the bull semen is of the order of 25 CP (Glover & Scott Blair 1966) 
and hence the viscosity of the bio-fluid in the core region may be taken as of the same 
order. Considering the peripheral-layer viscosity as 1 cP (i.e. of water), F2 can be 
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F l  -t 

FIGURE 9. Variation of P with ,Ti, for A p  and E .  01 = 0.833. 
--- , A p  = 0 ;  - , Ap = 0.05. 

found as 4 x 
1972), 

Using this value of ,i& and the following data (Lardner & Shack 

a = 50pm, c = 200pm s-l, h = 500pm, a = 0.833, e = 0.1, 

the flow rate per ductus efferent can be calculated from equation (41) as a = 0.199 
for Ap = 0-05 which gives the flow rate as Q' ( =  Q x nu%) = 1-09 x 10-3 ml h-l. 
This value is in error from the estimated value by 82%. However, calculating the 
flux from equation (30) of Lardner & Shack (1972) for the same pressure drop, it may 
be noted this error is 96.5%. 

6. Conclusion 
The effects of peripheral-layer viscosity on the transport of a bio-fluid due to peri- 

staltic motion have been discussed by considering circular-tube and parallel-plates 
models under the long wavelength approximation. It has been shown that the flow 
flux increases and friction force decreases as the thickness of the peripheral layer 
increases or its fluid viscosity decreases. Even for a small value of pressure drop, 
the increase in the flow or decrease in the friction force is considerable for smaller 
peripheral-layer viscosity in comparison to their respective values when the peripheral- 
layer viscosity is equal to the central-layer viscosity. 

For zero pressure drop, it has been noted that the flux does not depend upon the 
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peripheral-layer viscosity but the force of friction decreases considerably with its 
decrease. 

The analysis has been applied and compared with the observed flow rates in intestine 
and ductus efferentes of the male reproductive tract, and the importance of the peri- 
pheral-layer viscosity has been pointed out. 

The authors are extremely thankful to Professor Sir James Lighthill for his valuable 
comments and suggestions regarding this paper. 
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